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Semi Analytical

GULF OF GUINEA AFRICA WEST

Bolide Diameter (m): 270 Velocity (km/s):12.6 Density (gm/cm”3): 1.3
Impact Location Lat North: 2.5 Lon East: 25 Water Depth (m): 4361 |
Cavity Diameter (m): 4526  Cavity Depth (m): 1772
Impactor Energy (J): 1.06E+18 Tsunami Energy (J): 1.65E+17 3

Peak Tsunami Period (s): 57
Estimated Peak Runup Height in Meters Shown
Tsunami Envelope Shown
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Semi Analytical

The semi-analytical approach uses linear, dispersive wave theory to
derive tsunami waveforms given the initial shape of the transient
cavity and/or vertical velocity of the ocean surface.

Under those assumptions, the results are “exact” for uniform depth
oceans. A typical expression for vertical water displacement at
distance r and time t would be

W) = [ :%cos[a)(k)t]Jo(kr)Fo (k)

Where
2nDR,

Fy(k) = [rdr, u™(r,) J,(kr,) = J,(kR,)



=k dk
w ) = [ 0 o, coslotll,(knFy(k) - The first bit contains all
the dispersive and geometrical spreading information.

The second bit  F,(k) = [rdr, u™*'(r,) J,(kr,) =

Iy

contains the information
about the transient
cavity.

The most important
features as far as
tsunami are concerned
are cavity depth and
cavity diameter.

Other details are
interesting but
secondary.
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Impact Tsunami Initial Cavity Models
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Bigger cavities produce longer waves. Peak tsunami
heights are in waves of length 2 to 3 times crater radius.




Cavity information
versus impactor size
comes from scaling laws

Typical cavity diameters
are 10-50 km.

Typical tsunami periods

from cavities of that size
are 70 -150 s

Other than landslides,
nothing makes waves of
this period, so it 1s hard
to find natural analogs
of impact tsunami.
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True, linear theory tells us nothing about non-linear, turbulent dissipation.
Hydrocodes help, but disagreements exist there too.

Still, as long as the theory predicts tsunami REASONABLY WELL AT SOME
DISTANCE AWAY, that’s OK given all the other uncertainties
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Impact of 1km diameter asteroid into 4600 m ocean. Cavity rebounds and
tsunami waves are sent out. Dark line is hydrocode result by Valery Shuvalov.
Simple model doesn’t look half bad to me.




Impact tsunami in 3d. Uniform Ocean See the many waves.



Impact tsunami waves versus time and distance
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Impact tsunami are very dispersive. Long periods travel faster
than short periods. Dispersion reduces impact tsunami size
with distance faster than EQ tsunami.



Tsunami are cylindrical Measured Tsunami Amplitudes
Versus Distance from Nuclear Explosions

waves not spherical waves
W. Van Dorn, JGR 1961
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Transition to variable depth oceans by introducing ‘rays’ — either
Real Geometrical Ones or  Ones fixed by Network Theory.

"Real" Geometrical Network Theory
Ray Paths
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Real Example- Asteroid Eltanin Diameter: 1100m
When: 2.15 Million Years Ago.  Where: South Pacific

Waves were ~50
m high in South
America.

Tsunami this
large affect
entire ocean
basins.
Tsunami
envelope shown
here - many
wave cycles
underneath the
cover.

Eltanin Impact Tsunami Simulation
~2Ma




Propagation of linear tsunami well beyond the cavity is not
widely in dispute. Tsunami waves crush together in the shallows
and “bend around” obstacles. Watch out Ireland.




00:00:000"

Tsunami take ~8-15 hours to cross ocean basins. Tsunami
envelope plotted here again. Runups in meters shown.

Yikes, this is a big one



Semi-Analytical

Pros: Calculation is fairly quick. No need to carry
the waves through all spatial points from source to
receiver. Dispersion is fully included. Little concern
about numerical noise or numerical attenuation.
Products are depth dependent. No equations to solve.
Results are easy to interpret physically.

Cons: Results for variable depth oceans only
approximate. No account 1s taken for wave
reflections or multi-paths. Purely linear result.

Can’t carry waves to very shallow water or onto
land. Must provide fairly simple initial conditions.




Tsunami By Formula
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Tsunami by Formula

There 1s a demand for quick and dirty estimates of peak wave
run up given very limited knowledge of the tsunami source
or intervening geography/bathymetry. I call this approach
“tsunami by formula”.

In its barest form, tsunami involve just a few stages. By
making many semi-analytical runs of various sources, in
various water depths, at various distances. It is possible to
reduce each of the tsunami stages to a scalar multiplication or
clementary functional output.

Tsunami by Formula distills and simplifies the products from
the Semi-Analytical Approach



Run Up Flow Chart
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Step 1. Initial Tsunami Height AO and Diameter D

Use typical cavity
depth-diameter
relations again.
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Run Up Flow Chart
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Step 2. Propagation From Source to Shallower Water

Fit many curves with R being the distance from the source, D being

the diameter of the cavity, and H, being the water depth at the source:

. (1 . 2_R)[0.5+0.575exp(0.0175150)]
D

P is independent of A, but dependent on the
ratio of D/H, . Smaller sources (i.e., lower D/
H,) yield lower P because of DISPERSION
1s stronger for smaller events.

P <1, so wave size at distance 1s less than
the initial amplitude A(R)<A,.

The first term in accounts for geometrical
spreading. The second term in accounts for
additional wave height losses due to
frequency dispersion.
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Run Up Flow Chart
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Step 3. Tsunami Shoaling

e Tsunami waves slow and GROW as they move into shallower

water because their wave energy gets compressed vertically and
horizontally. This effect is called SHOALING

Shoaling factor “S” > 1 and

takes A(R) to A(S) by

S 1s conservative because:

(1) it 1s the largest
correction applicable to
long waves. Shorter
dispersive waves would
actually grow less.

(2) No additional frictional
losses are included in
moving across the
continental shelf into
shallow water.

A(S) = A(R) S = A(R) (%)

1/4
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Run Up Flow Chart
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Step 4. Tsunami Beaching

e Tsunami can’t get bigger and bigger forever as they move into
shallower and shallower water. Eventually they reach a terminal

size 1n a process called BEACHING.

* Beaching is a complex, non-linear process that depends on
beach slope, wave size, and period; however, it can be
generalized in a fairly simple way.

e Beaching function “B1” takes shoaled height A(S) to F4(0), the
flow depth at the beach.

F,0)=h=A(S)"H/
Plug A(S) = A(R)S into above equation to yield:
F,(0)=h=A(R)"H)®

F,(X,) 1s flow depth at the beginning of the run-in/run-up
computation.



Run Up Flow Chart
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Step 5. Tsunami Run-up
When the wave starts to run over dry land, friction and

topography act to make it smaller with distance inland

dF,(X)
dX

16.7n° N dT(X)
Fd (0)0.33 dX

— T(X) 1s the topographic elevation in meters.
— F4(X) 1s the flow depth at inland position X.

Integrate this equation until F (X) vanishes.

The resulting X_ . 18 the run-in distance and
T(X . )1s the run-up height.

max



Tsunami by Formula

Pros: Can’t get much simpler, basically an EXCEL
spreadsheet. Can be used by anyone with no prior
experience. Resulting formula can be integrated over
distance, impactor size, and time to get long term
“hazard” estimates. Very few inputs needed.

Cons: Only one or two numbers comes out — run up/
run-in. Arguably it produces worst case, “clear view”
results. Error estimates are foggy. Largely based on
linear theory. User has to depend on “Steve Ward”

parameterization.




Tsunami Squares
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Cells of given Water Thickness, Velocity In turn, Accelerate and Displace the Water in
and Acceleration at time T each cell overtime step dt
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(4) Sum the
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(6) Repeat.



As applied to impacts, Tsunami Squares needs the 1nitial shape of
the transient cavity and the mean horizontal velocity of the ocean
volume. Much like the semi-analytical approach, I get these from
scaling relations and application of “geophysical license™.

A Squares
application to
iImpact:
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Non-linear now,
but reminiscent of - 900m ]
the Semi-

Analytical result
before.
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Eltanin (again)
2Ma
South Pacific
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50m waves at Antarctica.
30m waves at Chile



Chicxulub Sims.
Normal and Obhque Impacts
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Tsunami Squares

Pros: Fully nonlinear. No equations to solve. Can carry
waves to shore or onto land. Includes all reflections and
multi-paths. Makes beautiful movies!

Cons: Purely numerical approach. Can be time consuming
depending on the number of squares and duration of signal.
There’s always a concern about numerical stability and
numerical attenuation. Uses depth-averaged assumptions, but
dispersion can be included. Results are complex and possibly

hard to interpret physically.



Thanks for Listening
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